package core import ( "github.com/huichen/wukong/types" "github.com/huichen/wukong/utils" "log" "math" "sync" ) // 索引器 type Indexer struct { // 从搜索键到文档列表的反向索引 // 加了读写锁以保证读写安全 tableLock struct { sync.RWMutex table map[string]*KeywordIndices docs map[uint64]bool } initOptions types.IndexerInitOptions initialized bool // 这实际上是总文档数的一个近似 numDocuments uint64 // 所有被索引文本的总关键词数 totalTokenLength float32 // 每个文档的关键词长度 docTokenLengths map[uint64]float32 } // 反向索引表的一行,收集了一个搜索键出现的所有文档,按照DocId从小到大排序。 type KeywordIndices struct { // 下面的切片是否为空,取决于初始化时IndexType的值 docIds []uint64 // 全部类型都有 frequencies []float32 // IndexType == FrequenciesIndex locations [][]int // IndexType == LocationsIndex } // 初始化索引器 func (indexer *Indexer) Init(options types.IndexerInitOptions) { if indexer.initialized == true { log.Fatal("索引器不能初始化两次") } indexer.initialized = true indexer.tableLock.table = make(map[string]*KeywordIndices) indexer.tableLock.docs = make(map[uint64]bool) indexer.initOptions = options indexer.docTokenLengths = make(map[uint64]float32) } // 向反向索引表中加入一个文档 func (indexer *Indexer) AddDocument(document *types.DocumentIndex) { if indexer.initialized == false { log.Fatal("索引器尚未初始化") } indexer.tableLock.Lock() defer indexer.tableLock.Unlock() // 更新文档关键词总长度 if document.TokenLength != 0 { originalLength, found := indexer.docTokenLengths[document.DocId] indexer.docTokenLengths[document.DocId] = float32(document.TokenLength) if found { indexer.totalTokenLength += document.TokenLength - originalLength } else { indexer.totalTokenLength += document.TokenLength } } docIdIsNew := true for _, keyword := range document.Keywords { indices, foundKeyword := indexer.tableLock.table[keyword.Text] if !foundKeyword { // 如果没找到该搜索键则加入 ti := KeywordIndices{} switch indexer.initOptions.IndexType { case types.LocationsIndex: ti.locations = [][]int{keyword.Starts} case types.FrequenciesIndex: ti.frequencies = []float32{keyword.Frequency} } ti.docIds = []uint64{document.DocId} indexer.tableLock.table[keyword.Text] = &ti continue } // 查找应该插入的位置 position, found := indexer.searchIndex( indices, 0, indexer.getIndexLength(indices)-1, document.DocId) if found { docIdIsNew = false // 覆盖已有的索引项 switch indexer.initOptions.IndexType { case types.LocationsIndex: indices.locations[position] = keyword.Starts case types.FrequenciesIndex: indices.frequencies[position] = keyword.Frequency } continue } // 当索引不存在时,插入新索引项 switch indexer.initOptions.IndexType { case types.LocationsIndex: indices.locations = append(indices.locations, []int{}) copy(indices.locations[position+1:], indices.locations[position:]) indices.locations[position] = keyword.Starts case types.FrequenciesIndex: indices.frequencies = append(indices.frequencies, float32(0)) copy(indices.frequencies[position+1:], indices.frequencies[position:]) indices.frequencies[position] = keyword.Frequency } indices.docIds = append(indices.docIds, 0) copy(indices.docIds[position+1:], indices.docIds[position:]) indices.docIds[position] = document.DocId } // 更新文章总数 if docIdIsNew { indexer.tableLock.docs[document.DocId] = true indexer.numDocuments++ } } // 查找包含全部搜索键(AND操作)的文档 // 当docIds不为nil时仅从docIds指定的文档中查找 func (indexer *Indexer) Lookup( tokens []string, labels []string, docIds map[uint64]bool, countDocsOnly bool) (docs []types.IndexedDocument, numDocs int) { if indexer.initialized == false { log.Fatal("索引器尚未初始化") } if indexer.numDocuments == 0 { return } numDocs = 0 // 合并关键词和标签为搜索键 keywords := make([]string, len(tokens)+len(labels)) copy(keywords, tokens) copy(keywords[len(tokens):], labels) indexer.tableLock.RLock() defer indexer.tableLock.RUnlock() table := make([]*KeywordIndices, len(keywords)) for i, keyword := range keywords { indices, found := indexer.tableLock.table[keyword] if !found { // 当反向索引表中无此搜索键时直接返回 return } else { // 否则加入反向表中 table[i] = indices } } // 当没有找到时直接返回 if len(table) == 0 { return } // 归并查找各个搜索键出现文档的交集 // 从后向前查保证先输出DocId较大文档 indexPointers := make([]int, len(table)) for iTable := 0; iTable < len(table); iTable++ { indexPointers[iTable] = indexer.getIndexLength(table[iTable]) - 1 } // 平均文本关键词长度,用于计算BM25 avgDocLength := indexer.totalTokenLength / float32(indexer.numDocuments) for ; indexPointers[0] >= 0; indexPointers[0]-- { // 以第一个搜索键出现的文档作为基准,并遍历其他搜索键搜索同一文档 baseDocId := indexer.getDocId(table[0], indexPointers[0]) if docIds != nil { _, found := docIds[baseDocId] if !found { continue } } iTable := 1 found := true for ; iTable < len(table); iTable++ { // 二分法比简单的顺序归并效率高,也有更高效率的算法, // 但顺序归并也许是更好的选择,考虑到将来需要用链表重新实现 // 以避免反向表添加新文档时的写锁。 // TODO: 进一步研究不同求交集算法的速度和可扩展性。 position, foundBaseDocId := indexer.searchIndex(table[iTable], 0, indexPointers[iTable], baseDocId) if foundBaseDocId { indexPointers[iTable] = position } else { if position == 0 { // 该搜索键中所有的文档ID都比baseDocId大,因此已经没有 // 继续查找的必要。 return } else { // 继续下一indexPointers[0]的查找 indexPointers[iTable] = position - 1 found = false break } } } _, ok := indexer.tableLock.docs[baseDocId] if found && ok { indexedDoc := types.IndexedDocument{} // 当为LocationsIndex时计算关键词紧邻距离 if indexer.initOptions.IndexType == types.LocationsIndex { // 计算有多少关键词是带有距离信息的 numTokensWithLocations := 0 for i, t := range table[:len(tokens)] { if len(t.locations[indexPointers[i]]) > 0 { numTokensWithLocations++ } } if numTokensWithLocations != len(tokens) { if !countDocsOnly { docs = append(docs, types.IndexedDocument{ DocId: baseDocId, }) } numDocs++ break } // 计算搜索键在文档中的紧邻距离 tokenProximity, tokenLocations := computeTokenProximity(table[:len(tokens)], indexPointers, tokens) indexedDoc.TokenProximity = int32(tokenProximity) indexedDoc.TokenSnippetLocations = tokenLocations // 添加TokenLocations indexedDoc.TokenLocations = make([][]int, len(tokens)) for i, t := range table[:len(tokens)] { indexedDoc.TokenLocations[i] = t.locations[indexPointers[i]] } } // 当为LocationsIndex或者FrequenciesIndex时计算BM25 if indexer.initOptions.IndexType == types.LocationsIndex || indexer.initOptions.IndexType == types.FrequenciesIndex { bm25 := float32(0) d := indexer.docTokenLengths[baseDocId] for i, t := range table[:len(tokens)] { var frequency float32 if indexer.initOptions.IndexType == types.LocationsIndex { frequency = float32(len(t.locations[indexPointers[i]])) } else { frequency = t.frequencies[indexPointers[i]] } // 计算BM25 if len(t.docIds) > 0 && frequency > 0 && indexer.initOptions.BM25Parameters != nil && avgDocLength != 0 { // 带平滑的idf idf := float32(math.Log2(float64(indexer.numDocuments)/float64(len(t.docIds)) + 1)) k1 := indexer.initOptions.BM25Parameters.K1 b := indexer.initOptions.BM25Parameters.B bm25 += idf * frequency * (k1 + 1) / (frequency + k1*(1-b+b*d/avgDocLength)) } } indexedDoc.BM25 = float32(bm25) } indexedDoc.DocId = baseDocId if !countDocsOnly { docs = append(docs, indexedDoc) } numDocs++ } } return } // 二分法查找indices中某文档的索引项 // 第一个返回参数为找到的位置或需要插入的位置 // 第二个返回参数标明是否找到 func (indexer *Indexer) searchIndex( indices *KeywordIndices, start int, end int, docId uint64) (int, bool) { // 特殊情况 if indexer.getIndexLength(indices) == start { return start, false } if docId < indexer.getDocId(indices, start) { return start, false } else if docId == indexer.getDocId(indices, start) { return start, true } if docId > indexer.getDocId(indices, end) { return end + 1, false } else if docId == indexer.getDocId(indices, end) { return end, true } // 二分 var middle int for end-start > 1 { middle = (start + end) / 2 if docId == indexer.getDocId(indices, middle) { return middle, true } else if docId > indexer.getDocId(indices, middle) { start = middle } else { end = middle } } return end, false } // 计算搜索键在文本中的紧邻距离 // // 假定第 i 个搜索键首字节出现在文本中的位置为 P_i,长度 L_i // 紧邻距离计算公式为 // // ArgMin(Sum(Abs(P_(i+1) - P_i - L_i))) // // 具体由动态规划实现,依次计算前 i 个 token 在每个出现位置的最优值。 // 选定的 P_i 通过 tokenLocations 参数传回。 func computeTokenProximity(table []*KeywordIndices, indexPointers []int, tokens []string) ( minTokenProximity int, tokenLocations []int) { minTokenProximity = -1 tokenLocations = make([]int, len(tokens)) var ( currentLocations, nextLocations []int currentMinValues, nextMinValues []int path [][]int ) // 初始化路径数组 path = make([][]int, len(tokens)) for i := 1; i < len(path); i++ { path[i] = make([]int, len(table[i].locations[indexPointers[i]])) } // 动态规划 currentLocations = table[0].locations[indexPointers[0]] currentMinValues = make([]int, len(currentLocations)) for i := 1; i < len(tokens); i++ { nextLocations = table[i].locations[indexPointers[i]] nextMinValues = make([]int, len(nextLocations)) for j, _ := range nextMinValues { nextMinValues[j] = -1 } var iNext int for iCurrent, currentLocation := range currentLocations { if currentMinValues[iCurrent] == -1 { continue } for iNext+1 < len(nextLocations) && nextLocations[iNext+1] < currentLocation { iNext++ } update := func(from int, to int) { if to >= len(nextLocations) { return } value := currentMinValues[from] + utils.AbsInt(nextLocations[to]-currentLocations[from]-len(tokens[i-1])) if nextMinValues[to] == -1 || value < nextMinValues[to] { nextMinValues[to] = value path[i][to] = from } } // 最优解的状态转移只发生在左右最接近的位置 update(iCurrent, iNext) update(iCurrent, iNext+1) } currentLocations = nextLocations currentMinValues = nextMinValues } // 找出最优解 var cursor int for i, value := range currentMinValues { if value == -1 { continue } if minTokenProximity == -1 || value < minTokenProximity { minTokenProximity = value cursor = i } } // 从路径倒推出最优解的位置 for i := len(tokens) - 1; i >= 0; i-- { if i != len(tokens)-1 { cursor = path[i+1][cursor] } tokenLocations[i] = table[i].locations[indexPointers[i]][cursor] } return } // 从KeywordIndices中得到第i个文档的DocId func (indexer *Indexer) getDocId(ti *KeywordIndices, i int) uint64 { return ti.docIds[i] } // 得到KeywordIndices中文档总数 func (indexer *Indexer) getIndexLength(ti *KeywordIndices) int { return len(ti.docIds) } // 删除某个文档 func (indexer *Indexer) RemoveDoc(docId uint64) { if indexer.initialized == false { log.Fatal("排序器尚未初始化") } indexer.tableLock.Lock() delete(indexer.tableLock.docs, docId) indexer.tableLock.Unlock() }